About the Wisdom of Blogging and Blog Marketing. About Blog Marketing Tips, internet marketing tools, service and the tips about Affiliate Marketing and Blogging.
Saturday, August 27, 2011
Of Indian Maths
In India, mathematics is related to Philosophy. We can find mathematical
concepts like Zero ( Shoonyavada ), One ( Advaitavada ) and Infinity
(Poornavada ) in Philosophia Indica.
The Sine Tables of Aryabhata and Madhava, which gives correct sine values or values of
24 R Sines, at intervals of 3 degrees 45 minutes and the trignometric tables of
Brahmagupta, which gives correct sine and tan values for every 5 degrees influenced
Christopher Clavius, who headed the Gregorian Calender Reforms of 1582. These
correct trignometric tables solved the problem of the three Ls, ( Longitude, Latitude and
Loxodromes ) for the Europeans, who were looking for solutions to their navigational
problem ! It is said that Matteo Ricci was sent to India for this purpose and the
Europeans triumphed with Indian knowledge !
The Western mathematicians have indeed lauded Indian Maths & Astronomy. Here are
some quotations from maths geniuses about the long forgotten Indian Maths !
In his famous dissertation titled "Remarks on the astronomy of Indians" in 1790,
the famous Scottish mathematician, John Playfair said
"The Constructions and these tables imply a great knowledge of
geometry,arithmetic and even of the theoretical part of astronomy.But what,
without doubt is to be accounted,the greatest refinement in this system, is
the hypothesis employed in calculating the equation of the centre for the
Sun,Moon and the planets that of a circular orbit having a double
eccentricity or having its centre in the middle between the earth and the
point about which the angular motion is uniform.If to this we add the great
extent of the geometrical knowledge required to combine this and the other
principles of their astronomy together and to deduce from them the just
conclusion;the possession of a calculus equivalent to trigonometry and
lastly their approximation to the quadrature of the circle, we shall be
astonished at the magnitude of that body of science which must have
enlightened the inhabitants of India in some remote age and which whatever
it may have communicated to the Western nations appears to have received
another from them...."
Albert Einstein commented "We owe a lot to the Indians, who taught us how to count,
without which no worthwhile scientific discovery could have been made."
The great Laplace, who wrote the glorious Mechanique Celeste, remarked
"The ingenious method of expressing every possible number
using a set of ten symbols (each symbol having a place value and an absolute
value) emerged in India. The idea seems so simple nowadays that its
significance and profound importance is no longer appreciated. Its
simplicity lies in the way it facilitated calculation and placed arithmetic
foremost amongst useful inventions. The importance of this invention is more
readily appreciated when one considers that it was beyond the two greatest
men of antiquity, Archimedes and Apollonius."
Friday, August 26, 2011
The Infinite Pi series of Madhava
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Madhava's Pi series
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Madhava's Pi series
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Thursday, August 25, 2011
Arctangent series of Madhava, Gregory and Liebniz
The inverse tangent series of Madhava is given in verse 2.206 – 2.209 in Yukti-dipika commentary (Tantrasamgraha-vyakhya) by Sankara Variar . It is also given by Jyeshtadeva in Yuktibhasha and a translation of the verses is given below.
Now, by just the same argument, the determination of the arc of a desired sine can be (made). That is as follows: The first result is the product of the desired sine and the radius divided by the cosine of the arc. When one has made the square of the sine the multiplier and the square of the cosine the divisor, now a group of results is to be determined from the (previous) results beginning from the first. When these are divided in order by the odd numbers 1, 3, and so forth, and when one has subtracted the sum of the even(-numbered) results from the sum of the odd (ones), that should be the arc. Here the smaller of the sine and cosine is required to be considered as the desired (sine). Otherwise, there would be no termination of results even if repeatedly (computed).
Rendering in modern notations
Let s be the arc of the desired sine, bhujajya, y. Let r be the radius and x be the cosine (kotijya).
The first result is y.r/x
From the divisor and multiplier y^2/x^2
From the group of results y.r/x.y^2/x^2, y.r/x. y^2/x^2.y^2/x^2
Divide in order by number 1,3 etc
1 y.r/1x, 1y.r/3x y^2/x^2, 1y.r/5x.y^2/x^2.Y^2/x^2
a = (Sum of odd numbered results) 1 y.r/1x + 1y.r/5x.y^2/x^2.y^2/x^2+......
b= ( Sum of even numbered results) 1y.r/3x.y^2/x^2 + 1 y.r/7x.y^2/x^2.y^2/x^.y^2/x^2+.....
The arc is now given by
s = a - b
Transformation to current notation
If x is the angle subtended by the arc s at the Center of the Circle, then s = rx and kotijya = r cos x and bhujajya = r sin x. And sparshajya = tan x
Simplifying we get
x = tan x - tan^3x/'3 + tan^5x/5 - tan^7x/7 + .....
Let tan x = z, we have
arctan ( z ) = z - z^3/3 + z^5/5 - z^7/7
We thank www.wikipedia.org for publishing this on their site.
Arctangent series of Madhava, Gregory and Liebniz
The inverse tangent series of Madhava is given in verse 2.206 – 2.209 in Yukti-dipika commentary (Tantrasamgraha-vyakhya) by Sankara Variar . It is also given by Jyeshtadeva in Yuktibhasha and a translation of the verses is given below.
Now, by just the same argument, the determination of the arc of a desired sine can be (made). That is as follows: The first result is the product of the desired sine and the radius divided by the cosine of the arc. When one has made the square of the sine the multiplier and the square of the cosine the divisor, now a group of results is to be determined from the (previous) results beginning from the first. When these are divided in order by the odd numbers 1, 3, and so forth, and when one has subtracted the sum of the even(-numbered) results from the sum of the odd (ones), that should be the arc. Here the smaller of the sine and cosine is required to be considered as the desired (sine). Otherwise, there would be no termination of results even if repeatedly (computed).
Rendering in modern notations
Let s be the arc of the desired sine, bhujajya, y. Let r be the radius and x be the cosine (kotijya).
The first result is y.r/x
From the divisor and multiplier y^2/x^2
From the group of results y.r/x.y^2/x^2, y.r/x. y^2/x^2.y^2/x^2
Divide in order by number 1,3 etc
1 y.r/1x, 1y.r/3x y^2/x^2, 1y.r/5x.y^2/x^2.Y^2/x^2
a = (Sum of odd numbered results) 1 y.r/1x + 1y.r/5x.y^2/x^2.y^2/x^2+......
b= ( Sum of even numbered results) 1y.r/3x.y^2/x^2 + 1 y.r/7x.y^2/x^2.y^2/x^.y^2/x^2+.....
The arc is now given by
s = a - b
Transformation to current notation
If x is the angle subtended by the arc s at the Center of the Circle, then s = rx and kotijya = r cos x and bhujajya = r sin x. And sparshajya = tan x
Simplifying we get
x = tan x - tan^3x/'3 + tan^5x/5 - tan^7x/7 + .....
Let tan x = z, we have
arctan ( z ) = z - z^3/3 + z^5/5 - z^7/7
We thank www.wikipedia.org for publishing this on their site.
Wednesday, August 24, 2011
The Madhava cosine series
Madhava's cosine series is stated in verses 2.442 and 2.443 in Yukti-dipika commentary (Tantrasamgraha-vyakhya) by Sankara Variar. A translation of the verses follows.
Multiply the square of the arc by the unit (i.e. the radius) and take the result of repeating that (any number of times). Divide (each of the above numerators) by the square of the successive even numbers decreased by that number and multiplied by the square of the radius. But the first term is (now)(the one which is) divided by twice the radius. Place the successive results so obtained one below the other and subtract each from the one above. These together give the śara as collected together in the verse beginning with stena, stri, etc.
Let r denote the radius of the circle and s the arc-length.
The following numerators are formed first:
s.s^2,
s.s^2.s^2
s.s^2.s^2.s^2
These are then divided by quantities specified in the verse.
1)s.s^2/(2^2-2)r^2,
2)s. s^2/(2^2-2)r^2. s^2/4^2-4)r^2
3)s.s^2/(2^2-2)r^2.s^2/(4^2-4)r^2. s^2/(6^2-6)r^2
As per verse,
sara or versine = r.(1-2-3)
Let x be the angle subtended by the arc s at the center of the Circle. Then s = rx and sara or versine = r(1-cosx)
Simplifying we get the current notation
1-cosx = x^2/2! -x^4/4!+ x^6/6!......
which gives the infinite power series of the cosine function.
Subscribe to:
Posts (Atom)