About the Wisdom of Blogging and Blog Marketing. About Blog Marketing Tips, internet marketing tools, service and the tips about Affiliate Marketing and Blogging.
.
.
.
.
.
t20
2025-06-21
03:05:13
vs
Match not started
t20
2025-06-21
07:05:13

vs

Match not started
t20
2025-06-21
10:05:13

vs

Match not started
t20
2025-06-21
11:05:13

vs

Match not started
t20
2025-06-21
12:35:13
vs
Match not started
t20
2025-06-21
14:05:13

vs

Match not started
t20
2025-06-21
16:05:13

vs

Match not started
t20
2025-06-21
16:35:13
vs
Match not started
t20
2025-06-21
16:50:13

vs

Match not started
t20
2025-06-21
17:05:13

vs

Match not started
t20
2025-06-21
17:05:13
vs
Match not started
t20
2025-06-21
21:05:13

vs

Match not started
t20
2025-06-22
27:05:13
vs
Match not started
t20
2025-06-22
34:05:13

vs

Match not started
t20
2025-06-22
35:35:13

vs

Match not started
t20
2025-06-22
36:35:13
vs
Match not started
t20
2025-06-22
36:50:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
test
2025-06-22
37:05:13

vs

Match not started
t20
2025-06-22
40:50:13
vs
Match not started
t20
2025-06-22
41:05:13
vs
Match not started
t20
2025-06-22
41:05:13

vs

Match not started
t20
2025-06-22
47:05:13
vs
Match not started
t20
2025-06-23
51:05:13
vs
Match not started
t20
2025-06-23
64:50:13
vs
Match not started
t20
2025-06-23
65:05:13

vs

Match not started
t20
2025-06-24
75:05:13
vs
Match not started
t20
2025-06-24
88:50:13

vs

Match not started
t20
2025-06-25
99:05:13
vs
Match not started
test
2025-06-25
103:35:13

vs

Match not started
t20
2025-06-25
112:50:13
vs
Match not started
t20
2025-06-26
123:05:13
vs
Match not started
t20
2025-06-26
136:50:13

vs

Match not started
t20
2025-06-27
147:05:13
vs
Match not started
t20
2025-06-20

vs

Match not started
t20
2025-06-20

vs

Gloucestershire need 3 runs in 6 balls
t20
2025-06-20

vs

Derbyshire need 82 runs in 17 balls
t20
2025-06-20

vs

Warwickshire need 15 runs in 13 balls
t20
2025-06-20

vs

Match not started
t20
2025-06-20

vs

West Indies Women need 109 runs in 48 balls
test
2025-06-20

vs

Day 1: Stumps - England opt to bowl
test
2025-06-17

vs

Day 4: Stumps - Bangladesh lead by 187 runs
t20
2025-06-20

vs

Surrey won by 75 runs
t20
2025-06-20

vs

Nottinghamshire won by 24 runs
t20
2025-06-20

vs

Somerset won by 6 wkts
t20
2025-06-20

vs

Kent won by 47 runs
t20
2025-06-20

vs

Durham won by 63 runs
t20
2025-06-20
vs
Gwalior Cheetahs won by 32 runs (VJD method)
t20
2025-06-20
vs
Raigad Royals won by 6 wkts
t20
2025-06-20

vs

Scotland won by 34 runs
t20
2025-06-20

vs

Papua New Guinea Women won by 31 runs
t20
2025-06-20
vs
Jabalpur Royal Lions won by 21 runs
t20
2025-06-20
vs
Eagle Nashik Titans won by 8 wkts
t20
2025-06-19

vs

Canada won by 42 runs
t20
2025-06-19

vs

Leicestershire won by 4 wkts
t20
2025-06-19

vs

Middlesex won by 1 run
t20
2025-06-19

vs

Somerset won by 17 runs
t20
2025-06-19

vs

Bermuda won by 26 runs
t20
2025-06-19
vs
There is no scorecard available for this match.
t20
2025-06-19

vs

Chepauk Super Gillies won by 6 wkts
t20
2025-06-19
vs
There is no scorecard available for this match.
t20
2025-06-19

vs

Nepal won by 6 wkts
t20
2025-06-19
vs
There is no scorecard available for this match.
t20
2025-06-19
vs
There is no scorecard available for this match.
t20
2025-06-19
vs
There is no scorecard available for this match.
t20
2025-06-19

vs

Vanuatu Women won by 9 runs
t20
2025-06-19
vs
MI New York won by 7 wkts
t20
2025-06-18

vs

Canada won by 10 wickets (DLS Method)
t20
2025-06-18

vs

Worcestershire won by 6 wkts
t20
2025-06-18

vs

Surrey won by 48 runs
t20
2025-06-18

vs

Gloucestershire won by 7 wkts
t20
2025-06-18

vs

Bermuda won by 7 wkts
t20
2025-06-18
vs
Jabalpur Royal Lions won by 5 wkts
t20
2025-06-18
vs
Siechem Madurai Panthers won by 10 runs
t20
2025-06-18
vs
No result due to rain
t20
2025-06-18

vs

Netherlands won by 17 runs
t20
2025-06-18
vs
Bundelkhand Bulls won by 7 wkts
t20
2025-06-18
vs
No result due to rain
t20
2025-06-18
vs
Washington Freedom won by 113 runs
t20
2025-06-17

vs

Surrey won by 69 runs
t20
2025-06-17
vs
No result due to rain
odi
2025-06-17

vs

South Africa Women won by 166 runs (2nd innings reduced to 39 ovs due to rain, DLS target 288)
t20
2025-06-17
vs
Trichy Grand Cholas won by 14 runs
t20
2025-06-17
vs
Raigad Royals won by 2 runs - DLS method
t20
2025-06-17

vs

Nepal won by 2 wkts
t20
2025-06-17

vs

Papua New Guinea Women won by 4 wkts
t20
2025-06-17
vs
Gwalior Cheetahs won by 46 runs
t20
2025-06-17
vs
Puneri Bappa won by 5 wkts (DLS target 132)
t20
2025-06-17
vs
There is no scorecard available for this match.
t20
2025-06-17
vs
Texas Super Kings won by 93 runs
t20
2025-06-16

vs

Bermuda won by 7 wkts
t20
2025-06-16

vs

Cayman Islands need 66 runs in 6 balls
t20
2025-06-16
vs
Gwalior Cheetahs won by 15 runs
t20
2025-06-16

vs

Chepauk Super Gillies won by 8 runs
t20
2025-06-16
vs
There is no scorecard available for this match.
t20
2025-06-16

vs

Match tied - Netherlands won in 3rd Super over
t20
2025-06-16
vs
Rewa Jaguars won by 39 runs
t20
2025-06-16
vs
There is no scorecard available for this match.
t20
2025-06-16
vs
There is no scorecard available for this match.
t20
2025-06-16

vs

Papua New Guinea Women won by 35 runs
t20
2025-06-15
vs
Texas Super Kings won by 57 runs
t20
2025-06-15

vs

Cayman Islands won by 38 runs
t20
2025-06-15
vs
There is no scorecard available for this match.
t20
2025-06-15

vs

Finland opt to bat
t20
2025-06-15

vs

Canada won by 110 runs
t20
2025-06-15

vs

West Indies won by 62 runs
t20
2025-06-15
vs
Bhopal Leopards won by 98 runs
t20
2025-06-15

vs

Nellai Royal Kings won by 8 wkts
t20
2025-06-15

vs

Glamorgan won by 40 runs
t20
2025-06-15

vs

Leicestershire won by 6 wkts
t20
2025-06-15

vs

Kent won by 4 runs
t20
2025-06-15

vs

Durham won by 6 wkts
t20
2025-06-15
vs
Kolhapur Tuskers won by 2 wkts
t20
2025-06-15

vs

Scotland won by 39 runs
t20
2025-06-15
vs
IDream Tiruppur Tamizhans won by 7 wkts
t20
2025-06-15
vs
Chambal Ghariyals won by 43 runs
t20
2025-06-15
vs
Satara Warriors won by 14 runs (DLS method)
t20
2025-06-15

vs

Norway won by 2 wkts
t20
2025-06-15
vs
Cambodia won by 10 wkts
t20
2025-06-15

vs

No result - due to rain
t20
2025-06-15
vs
No result
t20
2025-06-15
vs
Cambodia won by 9 wkts
t20
2025-06-15
vs
Washington Freedom won by 5 wkts
t20
2025-06-14
vs
San Francisco Unicorns won by 32 runs
t20
2025-06-14

vs

Canada won by 126 runs
t20
2025-06-14

vs

Sussex won by 27 runs
t20
2025-06-14

vs

Derbyshire won by 7 wkts
t20
2025-06-14

vs

Nottinghamshire won by 6 wkts
t20
2025-06-14

vs

There is no scorecard available for this match.
t20
2025-06-14

vs

Sweden won by 71 runs
t20
2025-06-14
vs
Rajnandgaon Panthers won by 5 wkts
odi
2025-06-14

vs

South Africa Women won by 40 runs
t20
2025-06-14
vs
Indore Pink Panthers won by 6 runs
t20
2025-06-14
vs
Dindigul Dragons won by 9 wkts
t20
2025-06-14

vs

Norway won by 9 wkts
t20
2025-06-14
vs
Raipur Rhinos won by 9 wkts
t20
2025-06-14

vs

Chepauk Super Gillies won by 8 wkts
t20
2025-06-14
vs
Rewa Jaguars won by 6 runs
t20
2025-06-14

vs

Denmark won by 18 runs
t20
2025-06-14
vs
Puneri Bappa won by 5 wkts
t20
2025-06-14

vs

Finland won by 11 runs
t20
2025-06-14

vs

Uganda Women won by 20 runs
t20
2025-06-14
vs
No result due to rain
t20
2025-06-14
vs
Indonesia won by 9 wkts
t20
2025-06-14
vs
Texas Super Kings won by 3 runs
Widget
Tuesday, August 30, 2011
Of Vedic Maths
Consisting of 16 basic aphorisms or Sutras, Vedic Mathematics is a system of Maths which prevailed in ancient India. Composed by Bharati Krishna Thirtha, these 16 sutras help one to do faster maths.
The first aphorism is this
"Whatever the extent of its deficiency, lessen it still further to that very extent; and also set up the square (of that deficiency)"
When computing the square of 9, as the nearest power of 10 is 9, let us take 10 as our base. As 9 is 1 less than 10, we can decrease it by the deficiency = 9-1 =8. This is the leftmost digit
On the right hand put deficiency^2, which is 1^2.
Hence the square of nine is 81.
For numbers above 10, instead of looking at the deficit we look at the surplus.
For example:
11^2 = (11+1)*10+1^2 = 121
12^2 = (12+2)*10+2^2 = 144
14^2 = ( 14+4)*10+4^2 = 196
25^2 = ((25+5)*2)*10+5^2 = 625
35^2= ((35+5)*3)*10+5^2 = 1225
Of Vedic Maths
Consisting of 16 basic aphorisms or Sutras, Vedic Mathematics is a system of Maths which prevailed in ancient India. Composed by Bharati Krishna Thirtha, these 16 sutras help one to do faster maths.
The first aphorism is this
"Whatever the extent of its deficiency, lessen it still further to that very extent; and also set up the square (of that deficiency)"
When computing the square of 9, as the nearest power of 10 is 9, let us take 10 as our base. As 9 is 1 less than 10, we can decrease it by the deficiency = 9-1 =8. This is the leftmost digit
On the right hand put deficiency^2, which is 1^2.
Hence the square of nine is 81.
For numbers above 10, instead of looking at the deficit we look at the surplus.
For example:
11^2 = (11+1)*10+1^2 = 121
12^2 = (12+2)*10+2^2 = 144
14^2 = ( 14+4)*10+4^2 = 196
25^2 = ((25+5)*2)*10+5^2 = 625
35^2= ((35+5)*3)*10+5^2 = 1225
Saturday, August 27, 2011
Mathematics and Philosophy
In India, mathematics is related to Philosophy. We can find mathematical
concepts like Zero ( Shoonyavada ), One ( Advaitavada ) and Infinity
(Poornavada ) in Philosophia Indica.
The Sine Tables of Aryabhata and Madhava, which gives correct sine values or values of
24 R Sines, at intervals of 3 degrees 45 minutes and the trignometric tables of
Brahmagupta, which gives correct sine and tan values for every 5 degrees influenced
Christopher Clavius, who headed the Gregorian Calender Reforms of 1582. These
correct trignometric tables solved the problem of the three Ls, ( Longitude, Latitude and
Loxodromes ) for the Europeans, who were looking for solutions to their navigational
problem ! It is said that Matteo Ricci was sent to India for this purpose and the
Europeans triumphed with Indian knowledge !
The Western mathematicians have indeed lauded Indian Maths & Astronomy. Here are
some quotations from maths geniuses about the long forgotten Indian Maths !
In his famous dissertation titled "Remarks on the astronomy of Indians" in 1790,
the famous Scottish mathematician, John Playfair said
"The Constructions and these tables imply a great knowledge of
geometry,arithmetic and even of the theoretical part of astronomy.But what,
without doubt is to be accounted,the greatest refinement in this system, is
the hypothesis employed in calculating the equation of the centre for the
Sun,Moon and the planets that of a circular orbit having a double
eccentricity or having its centre in the middle between the earth and the
point about which the angular motion is uniform.If to this we add the great
extent of the geometrical knowledge required to combine this and the other
principles of their astronomy together and to deduce from them the just
conclusion;the possession of a calculus equivalent to trigonometry and
lastly their approximation to the quadrature of the circle, we shall be
astonished at the magnitude of that body of science which must have
enlightened the inhabitants of India in some remote age and which whatever
it may have communicated to the Western nations appears to have received
another from them...."
Albert Einstein commented "We owe a lot to the Indians, who taught us how to count,
without which no worthwhile scientific discovery could have been made."
The great Laplace, who wrote the glorious Mechanique Celeste, remarked
"The ingenious method of expressing every possible number
using a set of ten symbols (each symbol having a place value and an absolute
value) emerged in India. The idea seems so simple nowadays that its
significance and profound importance is no longer appreciated. Its
simplicity lies in the way it facilitated calculation and placed arithmetic
foremost amongst useful inventions. The importance of this invention is more
readily appreciated when one considers that it was beyond the two greatest
men of antiquity, Archimedes and Apollonius."
Of Indian Maths
In India, mathematics is related to Philosophy. We can find mathematical
concepts like Zero ( Shoonyavada ), One ( Advaitavada ) and Infinity
(Poornavada ) in Philosophia Indica.
The Sine Tables of Aryabhata and Madhava, which gives correct sine values or values of
24 R Sines, at intervals of 3 degrees 45 minutes and the trignometric tables of
Brahmagupta, which gives correct sine and tan values for every 5 degrees influenced
Christopher Clavius, who headed the Gregorian Calender Reforms of 1582. These
correct trignometric tables solved the problem of the three Ls, ( Longitude, Latitude and
Loxodromes ) for the Europeans, who were looking for solutions to their navigational
problem ! It is said that Matteo Ricci was sent to India for this purpose and the
Europeans triumphed with Indian knowledge !
The Western mathematicians have indeed lauded Indian Maths & Astronomy. Here are
some quotations from maths geniuses about the long forgotten Indian Maths !
In his famous dissertation titled "Remarks on the astronomy of Indians" in 1790,
the famous Scottish mathematician, John Playfair said
"The Constructions and these tables imply a great knowledge of
geometry,arithmetic and even of the theoretical part of astronomy.But what,
without doubt is to be accounted,the greatest refinement in this system, is
the hypothesis employed in calculating the equation of the centre for the
Sun,Moon and the planets that of a circular orbit having a double
eccentricity or having its centre in the middle between the earth and the
point about which the angular motion is uniform.If to this we add the great
extent of the geometrical knowledge required to combine this and the other
principles of their astronomy together and to deduce from them the just
conclusion;the possession of a calculus equivalent to trigonometry and
lastly their approximation to the quadrature of the circle, we shall be
astonished at the magnitude of that body of science which must have
enlightened the inhabitants of India in some remote age and which whatever
it may have communicated to the Western nations appears to have received
another from them...."
Albert Einstein commented "We owe a lot to the Indians, who taught us how to count,
without which no worthwhile scientific discovery could have been made."
The great Laplace, who wrote the glorious Mechanique Celeste, remarked
"The ingenious method of expressing every possible number
using a set of ten symbols (each symbol having a place value and an absolute
value) emerged in India. The idea seems so simple nowadays that its
significance and profound importance is no longer appreciated. Its
simplicity lies in the way it facilitated calculation and placed arithmetic
foremost amongst useful inventions. The importance of this invention is more
readily appreciated when one considers that it was beyond the two greatest
men of antiquity, Archimedes and Apollonius."
Friday, August 26, 2011
The Infinite Pi series of Madhava
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Madhava's Pi series
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Madhava's Pi series
By means of the same argument, the circumference can be computed in another way too. That is as (follows): The first result should by the square root of the square of the diameter multiplied by twelve. From then on, the result should be divided by three (in) each successive (case). When these are divided in order by the odd numbers, beginning with 1, and when one has subtracted the (even) results from the sum of the odd, (that) should be the circumference. ( Yukti deepika commentary )
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
This quoted text specifies another formula for the computation of the circumference c of a circle having diameter d. This is as follows.
c = SQRT(12 d^2 - SQRT(12 d^2/3.3 + sqrt(12 d^2)/3^2.5 - sqrt(12d^2)/3^3.7 +.......
As c = Pi d , this equation can be rewritten as
Pi = Sqrt(12( 1 - 1/3.3 + 1/3^2.5 -1/3^3.7 +......
This is obtained by substituting z = Pi/ 6 in the power series expansion for arctan (z).
Pi/4 = 1 - 1/3 +1/5 -1/7+.....
This is Madhava's formula for Pi, and this was discovered in the West by Gregory and Liebniz.
Subscribe to:
Posts (Atom)